chore: migrate to gitea
This commit is contained in:
436
vendor/go.opentelemetry.io/otel/attribute/set.go
generated
vendored
Normal file
436
vendor/go.opentelemetry.io/otel/attribute/set.go
generated
vendored
Normal file
@@ -0,0 +1,436 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package attribute // import "go.opentelemetry.io/otel/attribute"
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"encoding/json"
|
||||
"reflect"
|
||||
"slices"
|
||||
"sort"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute/internal/xxhash"
|
||||
)
|
||||
|
||||
type (
|
||||
// Set is the representation for a distinct attribute set. It manages an
|
||||
// immutable set of attributes, with an internal cache for storing
|
||||
// attribute encodings.
|
||||
//
|
||||
// This type will remain comparable for backwards compatibility. The
|
||||
// equivalence of Sets across versions is not guaranteed to be stable.
|
||||
// Prior versions may find two Sets to be equal or not when compared
|
||||
// directly (i.e. ==), but subsequent versions may not. Users should use
|
||||
// the Equals method to ensure stable equivalence checking.
|
||||
//
|
||||
// Users should also use the Distinct returned from Equivalent as a map key
|
||||
// instead of a Set directly. Set has relatively poor performance when used
|
||||
// as a map key compared to Distinct.
|
||||
Set struct {
|
||||
hash uint64
|
||||
data any
|
||||
}
|
||||
|
||||
// Distinct is an identifier of a Set which is very likely to be unique.
|
||||
//
|
||||
// Distinct should be used as a map key instead of a Set for to provide better
|
||||
// performance for map operations.
|
||||
Distinct struct {
|
||||
hash uint64
|
||||
}
|
||||
|
||||
// Sortable implements sort.Interface, used for sorting KeyValue.
|
||||
//
|
||||
// Deprecated: This type is no longer used. It was added as a performance
|
||||
// optimization for Go < 1.21 that is no longer needed (Go < 1.21 is no
|
||||
// longer supported by the module).
|
||||
Sortable []KeyValue
|
||||
)
|
||||
|
||||
// Compile time check these types remain comparable.
|
||||
var (
|
||||
_ = isComparable(Set{})
|
||||
_ = isComparable(Distinct{})
|
||||
)
|
||||
|
||||
func isComparable[T comparable](t T) T { return t }
|
||||
|
||||
var (
|
||||
// keyValueType is used in computeDistinctReflect.
|
||||
keyValueType = reflect.TypeOf(KeyValue{})
|
||||
|
||||
// emptyHash is the hash of an empty set.
|
||||
emptyHash = xxhash.New().Sum64()
|
||||
|
||||
// userDefinedEmptySet is an empty set. It was mistakenly exposed to users
|
||||
// as something they can assign to, so it must remain addressable and
|
||||
// mutable.
|
||||
//
|
||||
// This is kept for backwards compatibility, but should not be used in new code.
|
||||
userDefinedEmptySet = &Set{
|
||||
hash: emptyHash,
|
||||
data: [0]KeyValue{},
|
||||
}
|
||||
|
||||
emptySet = Set{
|
||||
hash: emptyHash,
|
||||
data: [0]KeyValue{},
|
||||
}
|
||||
)
|
||||
|
||||
// EmptySet returns a reference to a Set with no elements.
|
||||
//
|
||||
// This is a convenience provided for optimized calling utility.
|
||||
func EmptySet() *Set {
|
||||
// Continue to return the pointer to the user-defined empty set for
|
||||
// backwards-compatibility.
|
||||
//
|
||||
// New code should not use this, instead use emptySet.
|
||||
return userDefinedEmptySet
|
||||
}
|
||||
|
||||
// Valid reports whether this value refers to a valid Set.
|
||||
func (d Distinct) Valid() bool { return d.hash != 0 }
|
||||
|
||||
// reflectValue abbreviates reflect.ValueOf(d).
|
||||
func (l Set) reflectValue() reflect.Value {
|
||||
return reflect.ValueOf(l.data)
|
||||
}
|
||||
|
||||
// Len returns the number of attributes in this set.
|
||||
func (l *Set) Len() int {
|
||||
if l == nil || l.hash == 0 {
|
||||
return 0
|
||||
}
|
||||
return l.reflectValue().Len()
|
||||
}
|
||||
|
||||
// Get returns the KeyValue at ordered position idx in this set.
|
||||
func (l *Set) Get(idx int) (KeyValue, bool) {
|
||||
if l == nil || l.hash == 0 {
|
||||
return KeyValue{}, false
|
||||
}
|
||||
value := l.reflectValue()
|
||||
|
||||
if idx >= 0 && idx < value.Len() {
|
||||
// Note: The Go compiler successfully avoids an allocation for
|
||||
// the interface{} conversion here:
|
||||
return value.Index(idx).Interface().(KeyValue), true
|
||||
}
|
||||
|
||||
return KeyValue{}, false
|
||||
}
|
||||
|
||||
// Value returns the value of a specified key in this set.
|
||||
func (l *Set) Value(k Key) (Value, bool) {
|
||||
if l == nil || l.hash == 0 {
|
||||
return Value{}, false
|
||||
}
|
||||
rValue := l.reflectValue()
|
||||
vlen := rValue.Len()
|
||||
|
||||
idx := sort.Search(vlen, func(idx int) bool {
|
||||
return rValue.Index(idx).Interface().(KeyValue).Key >= k
|
||||
})
|
||||
if idx >= vlen {
|
||||
return Value{}, false
|
||||
}
|
||||
keyValue := rValue.Index(idx).Interface().(KeyValue)
|
||||
if k == keyValue.Key {
|
||||
return keyValue.Value, true
|
||||
}
|
||||
return Value{}, false
|
||||
}
|
||||
|
||||
// HasValue reports whether a key is defined in this set.
|
||||
func (l *Set) HasValue(k Key) bool {
|
||||
if l == nil {
|
||||
return false
|
||||
}
|
||||
_, ok := l.Value(k)
|
||||
return ok
|
||||
}
|
||||
|
||||
// Iter returns an iterator for visiting the attributes in this set.
|
||||
func (l *Set) Iter() Iterator {
|
||||
return Iterator{
|
||||
storage: l,
|
||||
idx: -1,
|
||||
}
|
||||
}
|
||||
|
||||
// ToSlice returns the set of attributes belonging to this set, sorted, where
|
||||
// keys appear no more than once.
|
||||
func (l *Set) ToSlice() []KeyValue {
|
||||
iter := l.Iter()
|
||||
return iter.ToSlice()
|
||||
}
|
||||
|
||||
// Equivalent returns a value that may be used as a map key. Equal Distinct
|
||||
// values are very likely to be equivalent attribute Sets. Distinct value of any
|
||||
// attribute set with the same elements as this, where sets are made unique by
|
||||
// choosing the last value in the input for any given key.
|
||||
func (l *Set) Equivalent() Distinct {
|
||||
if l == nil || l.hash == 0 {
|
||||
return Distinct{hash: emptySet.hash}
|
||||
}
|
||||
return Distinct{hash: l.hash}
|
||||
}
|
||||
|
||||
// Equals reports whether the argument set is equivalent to this set.
|
||||
func (l *Set) Equals(o *Set) bool {
|
||||
if l.Equivalent() != o.Equivalent() {
|
||||
return false
|
||||
}
|
||||
if l == nil || l.hash == 0 {
|
||||
l = &emptySet
|
||||
}
|
||||
if o == nil || o.hash == 0 {
|
||||
o = &emptySet
|
||||
}
|
||||
return l.data == o.data
|
||||
}
|
||||
|
||||
// Encoded returns the encoded form of this set, according to encoder.
|
||||
func (l *Set) Encoded(encoder Encoder) string {
|
||||
if l == nil || encoder == nil {
|
||||
return ""
|
||||
}
|
||||
|
||||
return encoder.Encode(l.Iter())
|
||||
}
|
||||
|
||||
// NewSet returns a new Set. See the documentation for
|
||||
// NewSetWithSortableFiltered for more details.
|
||||
//
|
||||
// Except for empty sets, this method adds an additional allocation compared
|
||||
// with calls that include a Sortable.
|
||||
func NewSet(kvs ...KeyValue) Set {
|
||||
s, _ := NewSetWithFiltered(kvs, nil)
|
||||
return s
|
||||
}
|
||||
|
||||
// NewSetWithSortable returns a new Set. See the documentation for
|
||||
// NewSetWithSortableFiltered for more details.
|
||||
//
|
||||
// This call includes a Sortable option as a memory optimization.
|
||||
//
|
||||
// Deprecated: Use [NewSet] instead.
|
||||
func NewSetWithSortable(kvs []KeyValue, _ *Sortable) Set {
|
||||
s, _ := NewSetWithFiltered(kvs, nil)
|
||||
return s
|
||||
}
|
||||
|
||||
// NewSetWithFiltered returns a new Set. See the documentation for
|
||||
// NewSetWithSortableFiltered for more details.
|
||||
//
|
||||
// This call includes a Filter to include/exclude attribute keys from the
|
||||
// return value. Excluded keys are returned as a slice of attribute values.
|
||||
func NewSetWithFiltered(kvs []KeyValue, filter Filter) (Set, []KeyValue) {
|
||||
// Check for empty set.
|
||||
if len(kvs) == 0 {
|
||||
return emptySet, nil
|
||||
}
|
||||
|
||||
// Stable sort so the following de-duplication can implement
|
||||
// last-value-wins semantics.
|
||||
slices.SortStableFunc(kvs, func(a, b KeyValue) int {
|
||||
return cmp.Compare(a.Key, b.Key)
|
||||
})
|
||||
|
||||
position := len(kvs) - 1
|
||||
offset := position - 1
|
||||
|
||||
// The requirements stated above require that the stable
|
||||
// result be placed in the end of the input slice, while
|
||||
// overwritten values are swapped to the beginning.
|
||||
//
|
||||
// De-duplicate with last-value-wins semantics. Preserve
|
||||
// duplicate values at the beginning of the input slice.
|
||||
for ; offset >= 0; offset-- {
|
||||
if kvs[offset].Key == kvs[position].Key {
|
||||
continue
|
||||
}
|
||||
position--
|
||||
kvs[offset], kvs[position] = kvs[position], kvs[offset]
|
||||
}
|
||||
kvs = kvs[position:]
|
||||
|
||||
if filter != nil {
|
||||
if div := filteredToFront(kvs, filter); div != 0 {
|
||||
return newSet(kvs[div:]), kvs[:div]
|
||||
}
|
||||
}
|
||||
return newSet(kvs), nil
|
||||
}
|
||||
|
||||
// NewSetWithSortableFiltered returns a new Set.
|
||||
//
|
||||
// Duplicate keys are eliminated by taking the last value. This
|
||||
// re-orders the input slice so that unique last-values are contiguous
|
||||
// at the end of the slice.
|
||||
//
|
||||
// This ensures the following:
|
||||
//
|
||||
// - Last-value-wins semantics
|
||||
// - Caller sees the reordering, but doesn't lose values
|
||||
// - Repeated call preserve last-value wins.
|
||||
//
|
||||
// Note that methods are defined on Set, although this returns Set. Callers
|
||||
// can avoid memory allocations by:
|
||||
//
|
||||
// - allocating a Sortable for use as a temporary in this method
|
||||
// - allocating a Set for storing the return value of this constructor.
|
||||
//
|
||||
// The result maintains a cache of encoded attributes, by attribute.EncoderID.
|
||||
// This value should not be copied after its first use.
|
||||
//
|
||||
// The second []KeyValue return value is a list of attributes that were
|
||||
// excluded by the Filter (if non-nil).
|
||||
//
|
||||
// Deprecated: Use [NewSetWithFiltered] instead.
|
||||
func NewSetWithSortableFiltered(kvs []KeyValue, _ *Sortable, filter Filter) (Set, []KeyValue) {
|
||||
return NewSetWithFiltered(kvs, filter)
|
||||
}
|
||||
|
||||
// filteredToFront filters slice in-place using keep function. All KeyValues that need to
|
||||
// be removed are moved to the front. All KeyValues that need to be kept are
|
||||
// moved (in-order) to the back. The index for the first KeyValue to be kept is
|
||||
// returned.
|
||||
func filteredToFront(slice []KeyValue, keep Filter) int {
|
||||
n := len(slice)
|
||||
j := n
|
||||
for i := n - 1; i >= 0; i-- {
|
||||
if keep(slice[i]) {
|
||||
j--
|
||||
slice[i], slice[j] = slice[j], slice[i]
|
||||
}
|
||||
}
|
||||
return j
|
||||
}
|
||||
|
||||
// Filter returns a filtered copy of this Set. See the documentation for
|
||||
// NewSetWithSortableFiltered for more details.
|
||||
func (l *Set) Filter(re Filter) (Set, []KeyValue) {
|
||||
if re == nil {
|
||||
return *l, nil
|
||||
}
|
||||
|
||||
// Iterate in reverse to the first attribute that will be filtered out.
|
||||
n := l.Len()
|
||||
first := n - 1
|
||||
for ; first >= 0; first-- {
|
||||
kv, _ := l.Get(first)
|
||||
if !re(kv) {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
// No attributes will be dropped, return the immutable Set l and nil.
|
||||
if first < 0 {
|
||||
return *l, nil
|
||||
}
|
||||
|
||||
// Copy now that we know we need to return a modified set.
|
||||
//
|
||||
// Do not do this in-place on the underlying storage of *Set l. Sets are
|
||||
// immutable and filtering should not change this.
|
||||
slice := l.ToSlice()
|
||||
|
||||
// Don't re-iterate the slice if only slice[0] is filtered.
|
||||
if first == 0 {
|
||||
// It is safe to assume len(slice) >= 1 given we found at least one
|
||||
// attribute above that needs to be filtered out.
|
||||
return newSet(slice[1:]), slice[:1]
|
||||
}
|
||||
|
||||
// Move the filtered slice[first] to the front (preserving order).
|
||||
kv := slice[first]
|
||||
copy(slice[1:first+1], slice[:first])
|
||||
slice[0] = kv
|
||||
|
||||
// Do not re-evaluate re(slice[first+1:]).
|
||||
div := filteredToFront(slice[1:first+1], re) + 1
|
||||
return newSet(slice[div:]), slice[:div]
|
||||
}
|
||||
|
||||
// newSet returns a new set based on the sorted and uniqued kvs.
|
||||
func newSet(kvs []KeyValue) Set {
|
||||
s := Set{
|
||||
hash: hashKVs(kvs),
|
||||
data: computeDataFixed(kvs),
|
||||
}
|
||||
if s.data == nil {
|
||||
s.data = computeDataReflect(kvs)
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// computeDataFixed computes a Set data for small slices. It returns nil if the
|
||||
// input is too large for this code path.
|
||||
func computeDataFixed(kvs []KeyValue) any {
|
||||
switch len(kvs) {
|
||||
case 1:
|
||||
return [1]KeyValue(kvs)
|
||||
case 2:
|
||||
return [2]KeyValue(kvs)
|
||||
case 3:
|
||||
return [3]KeyValue(kvs)
|
||||
case 4:
|
||||
return [4]KeyValue(kvs)
|
||||
case 5:
|
||||
return [5]KeyValue(kvs)
|
||||
case 6:
|
||||
return [6]KeyValue(kvs)
|
||||
case 7:
|
||||
return [7]KeyValue(kvs)
|
||||
case 8:
|
||||
return [8]KeyValue(kvs)
|
||||
case 9:
|
||||
return [9]KeyValue(kvs)
|
||||
case 10:
|
||||
return [10]KeyValue(kvs)
|
||||
default:
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
// computeDataReflect computes a Set data using reflection, works for any size
|
||||
// input.
|
||||
func computeDataReflect(kvs []KeyValue) any {
|
||||
at := reflect.New(reflect.ArrayOf(len(kvs), keyValueType)).Elem()
|
||||
for i, keyValue := range kvs {
|
||||
*(at.Index(i).Addr().Interface().(*KeyValue)) = keyValue
|
||||
}
|
||||
return at.Interface()
|
||||
}
|
||||
|
||||
// MarshalJSON returns the JSON encoding of the Set.
|
||||
func (l *Set) MarshalJSON() ([]byte, error) {
|
||||
return json.Marshal(l.data)
|
||||
}
|
||||
|
||||
// MarshalLog is the marshaling function used by the logging system to represent this Set.
|
||||
func (l Set) MarshalLog() any {
|
||||
kvs := make(map[string]string)
|
||||
for _, kv := range l.ToSlice() {
|
||||
kvs[string(kv.Key)] = kv.Value.Emit()
|
||||
}
|
||||
return kvs
|
||||
}
|
||||
|
||||
// Len implements sort.Interface.
|
||||
func (l *Sortable) Len() int {
|
||||
return len(*l)
|
||||
}
|
||||
|
||||
// Swap implements sort.Interface.
|
||||
func (l *Sortable) Swap(i, j int) {
|
||||
(*l)[i], (*l)[j] = (*l)[j], (*l)[i]
|
||||
}
|
||||
|
||||
// Less implements sort.Interface.
|
||||
func (l *Sortable) Less(i, j int) bool {
|
||||
return (*l)[i].Key < (*l)[j].Key
|
||||
}
|
||||
Reference in New Issue
Block a user